340 research outputs found

    Topological states of the diatomic linear chain: effect of impedance matching to the fixed ends

    Get PDF
    The diatomic linear chain with nearest-neighbor spring constants C1 and C2 has topologically different bulk states for C1 ≷ C2. A finite chain of N unit cells and fixed ends (the first and last spring is C1) exhibits two topological end states within the gap for C1 > C2.We investigate the effect of an impedance mismatch by varying the first and last ‘boundary’ spring constant termed CF from its ideal value C1. CF = 0 represents an open end and does never lead to topological states. CF→∞means that also the next site to the boundary is fixed, leading to topological states only for C1 < C2 since now the first movable spring is C2. Within a range of CF around C1 topological end states are preserved for C1 > C2. For C2 > C1, topological end states occur when CF exceeds a certain value

    Report / Institute fĂŒr Physik

    Get PDF
    The 2016 Report of the Physics Institutes of the UniversitÀt Leipzig presents a hopefully interesting overview of our research activities in the past year. It is also testimony of our scientific interaction with colleagues and partners worldwide. We are grateful to our guests for enriching our academic year with their contributions in the colloquium and within our work groups

    Report / Institute fĂŒr Physik

    Get PDF
    The 2014 Report of the Physics Institutes of the UniversitĂ€t Leipzig presents a hopefully interesting overview of our research activities in the past year. It is also testimony of our scientific interaction with colleagues and partners worldwide. We are grateful to our guests for enriching our academic year with their contributions in the colloquium and within the work groups. The open full professorship in the Institute for Experimental Physics I has been filled with an outstanding candidate. We could attract Prof. Ralf Seidel from the University of MĂŒnster. He is an expert in molecular biophysics that complements the existing strength in cellular biophysics. Prof. Hollands could fill all positions of his ERC Starting Grant, so that the work on the project \"Quantum Fields and Curvature – Novel Constructive Approach via Operator Product Expansion\" is now running at full pace. Within the Horizon 2020 project LOMID \"Large Cost-effective OLED Microdisplays and their Applications\" (2015-2017) with eight European partners including industry the semiconductor physics group contributes with transparent oxide devices. A joint laboratory for single ion implantation was established between the Leibniz-Institute for Surface Modification (IOM) and the university under the guidance of Profs. Rauschenbach and Meijer. The EU IRSES Network DIONICOS \"Dynamics of and in Complex Systems\", a consortium of 6 European and 12 non-European partners, including sites in England, France and Germany as well as in Russia, Ukraine, India, the United States and Venezuela, started in February 2014. In the next four years the Leipzig node headed by Prof. Janke will profit from the numerous international contacts this network provides. With a joint project, Prof. Kroy and Prof. Cichos participate in the newly established priority research programme SPP 1726 \"Microswimmers\", which started with a kick-off workshop in October 2014. In 2014 the International Graduate College \"Statistical Physics of Complex Systems\" run by the computational physics group has commenced its third 3-years granting period funded by Deutsch-Französische Hochschule (DFH-UFA). Besides the main partner UniversitĂ© de Lorraine in Nancy, France, now also Coventry University, UK, and the Institute for Condensed Matter Physis of the National Academy of Sciences of Ukraine in Lviv, Ukraine, participate as associated partners. During the last week of September the TCO2014 conference \"Transparent Conductive Oxides – Fundamentals and Applications\" took place in honor of the 100th anniversary of the death of Prof. Dr. KarlW. BĂ€deker. In 1907 Karl BĂ€deker had discovered transparent conductive materials and oxides in Leipzig. About a hundred participants joined for many invited talks from international experts, intense discussion and new cooperations. At the end of November the by now traditional 15th nternational Workshop on Recent Developments in Computational Physics \"CompPhys14\" organized by Prof. Janke took place in Leipzig. Around 60 scientists from over 10 different countries exchanged ideas and discussed recent progress in several fields of computational physics. Work has successfully continued in the Centers of Excellence (Sonderforschungsbereiche) SFB 762 \"Functionality ofOxide Interfaces\" and SFB TRR 102 \"Polymers under Multiple Constraints: Restricted and Controlled Molecular Order and Mobility\" (just renewed for 2015-2019). Our activities and success are only possible with the generous support fromvarious funding agencies for which we are very grateful and which is individually acknowledged in the brief reports

    Report / Institute fĂŒr Physik

    Get PDF
    The 2014 Report of the Physics Institutes of the UniversitĂ€t Leipzig presents a hopefully interesting overview of our research activities in the past year. It is also testimony of our scientific interaction with colleagues and partners worldwide. We are grateful to our guests for enriching our academic year with their contributions in the colloquium and within the work groups. The open full professorship in the Institute for Experimental Physics I has been filled with an outstanding candidate. We could attract Prof. Ralf Seidel from the University of MĂŒnster. He is an expert in molecular biophysics that complements the existing strength in cellular biophysics. Prof. Hollands could fill all positions of his ERC Starting Grant, so that the work on the project \"Quantum Fields and Curvature – Novel Constructive Approach via Operator Product Expansion\" is now running at full pace. Within the Horizon 2020 project LOMID \"Large Cost-effective OLED Microdisplays and their Applications\" (2015-2017) with eight European partners including industry the semiconductor physics group contributes with transparent oxide devices. A joint laboratory for single ion implantation was established between the Leibniz-Institute for Surface Modification (IOM) and the university under the guidance of Profs. Rauschenbach and Meijer. The EU IRSES Network DIONICOS \"Dynamics of and in Complex Systems\", a consortium of 6 European and 12 non-European partners, including sites in England, France and Germany as well as in Russia, Ukraine, India, the United States and Venezuela, started in February 2014. In the next four years the Leipzig node headed by Prof. Janke will profit from the numerous international contacts this network provides. With a joint project, Prof. Kroy and Prof. Cichos participate in the newly established priority research programme SPP 1726 \"Microswimmers\", which started with a kick-off workshop in October 2014. In 2014 the International Graduate College \"Statistical Physics of Complex Systems\" run by the computational physics group has commenced its third 3-years granting period funded by Deutsch-Französische Hochschule (DFH-UFA). Besides the main partner UniversitĂ© de Lorraine in Nancy, France, now also Coventry University, UK, and the Institute for Condensed Matter Physis of the National Academy of Sciences of Ukraine in Lviv, Ukraine, participate as associated partners. During the last week of September the TCO2014 conference \"Transparent Conductive Oxides – Fundamentals and Applications\" took place in honor of the 100th anniversary of the death of Prof. Dr. KarlW. BĂ€deker. In 1907 Karl BĂ€deker had discovered transparent conductive materials and oxides in Leipzig. About a hundred participants joined for many invited talks from international experts, intense discussion and new cooperations. At the end of November the by now traditional 15th nternational Workshop on Recent Developments in Computational Physics \"CompPhys14\" organized by Prof. Janke took place in Leipzig. Around 60 scientists from over 10 different countries exchanged ideas and discussed recent progress in several fields of computational physics. Work has successfully continued in the Centers of Excellence (Sonderforschungsbereiche) SFB 762 \"Functionality ofOxide Interfaces\" and SFB TRR 102 \"Polymers under Multiple Constraints: Restricted and Controlled Molecular Order and Mobility\" (just renewed for 2015-2019). Our activities and success are only possible with the generous support fromvarious funding agencies for which we are very grateful and which is individually acknowledged in the brief reports

    Report / Institute fĂŒr Physik

    Get PDF
    The 2016 Report of the Physics Institutes of the UniversitÀt Leipzig presents a hopefully interesting overview of our research activities in the past year. It is also testimony of our scientific interaction with colleagues and partners worldwide. We are grateful to our guests for enriching our academic year with their contributions in the colloquium and within our work groups
    • 

    corecore